Protocol No: HLS Study No: 00-6129 Abbreviated Title: Immunological Evaluation of Gasoline ETBE Vapor Condensate

١.

GLP COMPLIANCE STATEMENT

This study was conducted in compliance with EPA Good Laboratory Practices as set forth in 79.60, CFR Vol. 59, No. 122, 27 June 1994 with the following exceptions:

- 1. It was the Sponsor's responsibility to maintain the methods of synthesis, fabrication, or derivation of the test fuel. This had not been completed when the study initiated but is currently with the Sponsor.
- 2. The identity, strength, purity and composition or other characteristics to define the positive control article have not been determined by the Testing Facility. The positive control article has not been characterized as per the Certificate of analysis on file with the Testing Facility. The stability of the positive control article has not been determined by the Testing Facility. Analyses to determine the uniformity (as applicable) or concentration of the positive control article mixture were not performed by the Testing Facility. The stability of the positive control article mixture has not been determined by the Testing Facility.

Kimber L. White, Jr., Ph.D./ Principal Investigator ImmunoTox[®], Inc.

Gary M. Hoffman, B.A., DABT Study Director Huntingdon Life Sciences

13 Aug 10

Oetto Date

Page 2 of 27

ana dana kana kana kana kana kana

Profocol No. HLS Study No. 00-6129 Abbreviated Title: Immunological Evaluation of Gasoline ETBE Vapor Condensate

ll.

ITI Study No. ITI 901 Security: Industrial Confidential

QUALITY ASSURANCE STATEMENT

Test Substance: Gasoline ETBE Vapor Condensate

Report Title: Immunological Evaluation of Gasoline ETBE Vapor Condensate in Female Sprague Dawley Rats Using the Plaque-Forming Cell Assay

Protocol Title: Gasoline ETBE Vapor Condensate: A 13-Week Whole-Body Inhalation Toxicity Study in Rats with Neurotoxicity Assessments And 4-Week In Vivo Genotoxicity and Immunotoxicity Assessments

Protocol No.: HLS Study No. 00-6129

The final report for the indicated protocol has been reviewed by the Quality Assurance Unit of Virginia Commonwealth University. Furthermore, the Quality Assurance Unit has conducted the following inspections and reported to the ImmunoTox[®], Inc. Principal Investigator, and then has submitted written reports of said inspections to the Study Director and Management.

Inspection/Audits were performed and reported on the following dates:

Performed	Reported	Activity
21 November 01	28 November 01	AFC Assay
3-5 May 02	6 May 02	Data Audit
4-5 May 02	6 May 02	1** Draft Report Audit
14 April 07	19 April 07	2 nd Draft Report Audit

Approved and submitted by:

Quality Assu e Manager

1<u>3 August 10</u> Date

Page 3 of 27

HUNTINGDON LIFE SCIENCES QUALITY ASSURANCE STATEMENT

Listed below are the dates that this study was inspected by the Quality Assurance Unit of Huntingdon Life Sciences, East Millstone, New Jersey, and the dates that findings were reported to the Study Director and Management. This report reflects the raw data as far as can be reasonably established.

Type of Inspection	Date(s) of Inspection	Reported to Study Director and Management
General Facility Inspection	26 Sep 00	5 Dec 00 ^a
GLP Protocol Review	24, 29 Aug 01	29 Aug 01
Exposure, Monitoring and Equipment Records	23 Oct 01	23 Oct 01
GC Characterization	09 Nov 01	09 Nov 01
Immunotoxicity and Positive Control Dosing	16 Nov 01	16 Nov 01
Immunotoxicity Necropsy	20 Nov 01	20 Nov 01

Fran Jannone, B.d., RQAP-GLP Quality Assurance Group Leader

20 Ó

Date

^aDate reported to Testing Facility Management

ITI Study No. ITI 901 Security: Industrial Confidential

111. SIGNATURE OF PRINCIPALS

This report describes the results used to evaluate the relative immunotoxicological potential of the test substance, Gasoline ETBE Vapor Condensate, which was administered by inhalation via whole-body exposure to female Sprague Dawley rats.

Kimber L. White, Jr., Ph.D., Principal Investigator, was responsible for the overall conduct of the immunotoxicity evaluations in this study. Vanessa L. Peachee, M.S., served as the Assistant Principal Investigator and was responsible for the day-to-day activities of the immunotoxicity evaluations in this study.

Kimber L. White, Jr., Ph.D. **Principal Investigator** ImmunoTox[®], Inc.

Vanessa L. Peachee, M.S. Assistant Principal Investigator ImmunoTox[®], Inc.

Approved:

Gary M. Hoffman, B.A., DABT **Study Director** Huntingdon Life Sciences

In L. Whitz Date 13 Aug 14 Ma Alladel Date 17 Aug 14

220ct10 Date

TABLE OF CONTENTS

١.	GLP Compliance Statement2
11.	Quality Assurance Statements
	ImmunoTox®, Inc3
	Huntingdon Life Sciences4
Ш.	Signature of Principals5
IV.	Executive Summary8
v.	Introduction 10
VI.	Methods of Procedure 12
	Experimental Design
	Variables Assessed 12
	Terminal Body and Organ Weights 12
	Splenocyte Preparation
	Spleen IgM Antibody Response to the T-dependent Antigen, sRBC. Day 4 Response 13
	Data
	Data Handling and Statistical Analysis
	Data Retention
VII.	Results
	Terminal Body and Organ Weights
	Spleen IgM Antibody Response to the T-dependent Antigen, sRBC. Day 4 Response 17
VIII.	Conclusion
IX.	References
Х.	List of Figures
	1. Absolute (mg) and Relative (%) Spleen Weight in Female Sprague Dawley Rats
	Exposed to Gasoline ETBE Vapor Condensate via Inhalation for 5 Days per Week for 4
	Weeks
	2. Absolute (mg) and Relative (%) Thymus Weight in Female Sprague Dawley Rats
	Exposed to Gasoline ETBE Vapor Condensate via Inhalation for 5 Days per Week for 4
	Weeks
	3. Spleen Cell Number in Female Sprague Dawley Rats Exposed to Gasoline ETBE Vapor
	Condensate via Inhalation for 5 Days per Week for 4 Weeks

XI. List of Tables

ES1 Summary Table for Toxicology and Immunology Studies......9

1 Body Weight (g) and Organ Weights (mg) in Female Sprague Dawley Rats Exposed to Gasoline ETBE Vapor Condensate via Inhalation for 5 Days per Week for 4 Weeks

APPENDICES

- A Individual Animal Data
- B Contracting Sponsor's Exposure and Animal Data

IV. EXECUTIVE SUMMARY

The study was conducted as part of Huntingdon Life Sciences (HLS) Study No. 00-6129 at ImmunoTox[®], Inc., Richmond, Virginia. The Principal Investigator was Kimber L. White, Jr., Ph.D., and Vanessa L. Peachee, M.S., served as the Assistant Principal Investigator. The study was conducted to provide evaluation of immunological parameters for Huntingdon Life Sciences.

The objective of the study was to determine the potential effects of Gasoline ETBE Vapor Condensate for its ability to affect the humoral immune component of the immune system, when evaluated in the antibody-forming cell response to the T-dependent antigen, sheep erythrocytes. Female Sprague Dawley rats were administered Gasoline ETBE Vapor Condensate for 5 days per week for 4 weeks by inhalation via whole body exposure by Huntingdon Life Sciences (HLS) Princeton Research Center (PRC) personnel. Three exposure levels of 2,000, 10,000 and 20,000 mg/m³ of the test substance were used in the study. The in-life phase of the study was conducted by HLS, East Millstone, NJ, and the immunological evaluation was conducted by ImmunoTox[®], Inc., Richmond, VA. On the day of sacrifice, spleens were placed in tubes containing media, placed on ice, and shipped to ImmunoTox[®], Inc. in Richmond, VA, for assay evaluation on the following day.

Executive Summary Table ES-1 shows a summary of the selected toxicology and immunology parameters evaluated. Exposure to Gasoline ETBE Vapor Condensate resulted in no statistically significant changes in terminal body weight for any exposure level. Furthermore, there were no statistically significant effects observed in either thymus or spleen weight following exposure to Gasoline ETBE Vapor Condensate, when evaluated as either absolute or relative weight (% body weight), as compared to the air control.

Exposure to Gasoline ETBE Vapor Condensate did result in a statistically significant decrease in the humoral immune response when evaluated in the IgM antibody-forming cell (AFC) response to the T-dependent antigen, sheep erythrocytes. When evaluated as specific activity (AFC/10⁶ spleen cells), a 76% decrease was observed at the middle dose group and a 72% decrease at the high dose group. When evaluated as total spleen activity (AFC/spleen), there was a 74% decrease at the middle dose group and a 70% decrease at the high dose group. A no effect level was observed at the 2000 mg/m³ exposure level. The positive control, CPS, produced the anticipated results in the various parameters evaluated.

In conclusion, the results of this immunotoxicological evaluation demonstrate that, under the experimental conditions used, exposure to the Gasoline ETBE Vapor Condensate test substance adversely affected the functional ability of the humoral immune component of the immune system.

Table ES-1

SUMMARY TABLE FOR TOXICOLOGY AND IMMUNOLOGY STUDIES

Parameter	Result	Maximum Effect	Exposure Leve (mg/m³)
Terminal Body Weight			· · · · · · · · · · · · · · · · · · ·
Day 29	No Effect		
Organ Weights (Absolute	and Relative)		
Spleen	No Effect		
Thymus	No Effect		
Spleen IgM Antibody-Form	ming Cell Respor	se to Sheep Erythrocy	/tes
IgM AFC/10 ⁶ Spleen Cells	Decrease	76%	10,000 ª
IgM AFC/Spleen (x10 ³)	Decrease	74%	10,000 ª

.

V. INTRODUCTION

The purpose of this study was to provide evaluation of immunological parameters for Huntingdon Life Sciences (HLS) Study No. 00-6129. In this study, the ability of the test substance, Gasoline ETBE Vapor Condensate, was evaluated for its ability to affect the humoral immune component of the immune system, when evaluated in the antibody-forming cell response to the T-dependent antigen sheep erythrocytes. Four days prior to sacrifice, ImmunoTox[®], Inc. personnel sensitized the rats by intravenous administration of sheep erythrocytes at the HLS facility. On the day of sacrifice, HLS Princeton Research Center (PRC) personnel aseptically removed the spleen from each animal. The spleens were weighed, placed in tubes containing media, and sent to ImmunoTox[®], Inc. in Richmond, VA, on ice for evaluation the following day. Spleens were received on 21 November 2001 and the immunological evaluation was conducted on the same day. The IgM antibody-forming cell (AFC) response to the T-dependent antigen sheep erythrocytes, also referred to as the plaque assay, was the immunological assay conducted to evaluate the effect of Gasoline ETBE Vapor Condensate on the immune response. This assay has been shown to be the most predictive functional assay for determining the immunotoxicological potential of a compound (Luster *et al.*¹).

As background, sheep erythrocytes (sRBC) are a T-dependent antigen and, thus, T cells, B cells, and macrophages are required to function properly in order to obtain an antibody-forming cell (AFC) response. If the test article affects any of these cell types to a significant degree, an altered response will be observed. As a result, the T-dependent IgM response to sRBC is one of the most sensitive immunotoxicological assays currently in use. A significant modulation in the IgM AFC response, when appropriately compared to vehicle controls, indicates that the test agent is capable of modifying the humoral immune response in the whole animal and, thus, has the potential for immunotoxicity. This assay is one of the Tier I assays used by the NTP².

Kimber L. White, Jr., Ph.D., was the Principal Investigator for the immunological evaluation conducted by ImmunoTox[®], Inc., and Gary M. Hoffman, B.A., DABT, was the HLS Study Director. Vanessa L. Peachee, M.S., served as the Assistant Principal Investigator for ImmunoTox[®], Inc. and was responsible for carrying out the IgM antibody-forming cell assay.

In evaluating the effects of Gasoline ETBE Vapor Condensate on the immune system, the immunologic and toxicologic parameters evaluated were spleen weights, thymus weights, and the spleen IgM antibody response to the T-dependent antigen (sheep erythrocytes, sRBC).

To the best of our knowledge, no significant protocol or standard operating procedure deviations occurred during the study, which affected the quality of the data and the ability to interpret the data with respect to the immunotoxicology of Gasoline ETBE Vapor Condensate.

VI. METHODS OF PROCEDURE

EXPERIMENTAL DESIGN

The immunotoxicological satellite study consisted of a vehicle group, three exposure levels of Gasoline ETBE Vapor Condensate, and a positive control group. There were 10 female Sprague Dawley rats in each of the groups. Animals were exposed by Huntingdon Life Sciences Princeton Research Center (PRC) personnel to either vehicle (air only) or Gasoline ETBE Vapor Condensate at exposure levels of 2,000, 10,000 or 20,000 mg/m³ via inhalation for 4 weeks (5 days per week). Cyclophosphamide (CPS) was given as the positive control and was obtained from the Sigma Chemical Company (responsible for its characterization). Cyclophosphamide was dissolved and diluted in phosphate buffered saline at Huntingdon Life Sciences to stock concentrations of 5.0 mg/mL for use as the positive control for this study. The positive control animals received 50 mg/kg @ 10 mL/kg of CPS, a known immunosuppressive agent, administered intraperitoneally (i.p.) on the last 4 days of exposure. These animals were not chamber exposed. On the day of sacrifice, one day after the last exposure, PRC personnel aseptically removed the spleen from each animal, weighed it, placed it in a collecting tube containing Earle's Balanced Salt Solution (EBSS) with HEPES and Gentamicin solution (prepared at PRC), and shipped the spleens on ice in individual shipping containers at 2-8°C by carrier to ImmunoTox[®]. Inc. for overnight delivery. Upon receipt, spleens were further processed for determination of IgM antibody response.

VARIABLES ASSESSED

<u>Terminal Body and Organ Weights</u>. Huntingdon Life Sciences PRC personnel collected blood (serum) samples (orbital collection anesthetized via carbon dioxide/oxygen inhalation) and then sacrificed (carbon dioxide inhalation) the animals on the day after the final exposure. The serum samples were frozen (\leq -20°C). The thymuses were removed, weighed, and preserved (formalin) for possible histopathology. Spleens were removed, weighed, and shipped at the time of sacrifice by PRC personnel to ImmunoTox[®], Inc. for immunotoxicological evaluation.

<u>Splenocyte Preparation</u>. Upon arrival at the ImmunoTox[®], Inc. testing facility, spleens were accessioned in accordance with the SOP for receipt of biological samples. Single-cell suspensions were prepared from each spleen using a Stomacher[®] 80 Lab Blender in accordance with the SOP for rat spleens. Cell suspensions were then centrifuged and resuspended in Earle's Balanced Salt

Solution with HEPES. Viability of splenocytes was determined using propidium iodide (PI) and the Coulter EPICS XL-MCL Flow Cytometer.

Spleen IgM Antibody Response to the T-dependent Antigen, sRBC. Day 4 Response. The primary IgM response to sheep erythrocytes was measured using a modified hemolytic plaque assay of Jerne³. Rats were exposed to the test article for 5 days per week for 4 weeks. Rats were sensitized by ImmunoTox[®], Inc. personnel with 2x10⁸ sRBC i.v. four days prior to sacrifice and, on the day after the last exposure, animals were sacrificed by PRC personnel. Spleen cell suspensions were prepared as described above. The cells were centrifuged and resuspended in a 6-ml volume, and 1:50 and 1:150 dilutions were prepared. An 0.1-ml aliquot of spleen cells from each suspension was added to separate test tubes, each containing 25 μ l guinea pig complement, 25 μ l sRBC, and 0.5 ml of warm agar (0.5%). After thoroughly mixing, each test tube mixture was plated onto a separate petri dish, covered with a microscope cover slip, and incubated at approximately 36-38°C for 3 hours. One dilution per animal was evaluated. Spleen cell counts were performed on the 6-ml samples using a Model Z1 Coulter Counter. The cells/spleen, AFC/10⁶ spleen cells, and AFC/spleen were determined. The plaques, which developed, were counted using a Bellco plaque viewer. A plaque, occurring from the lysis of sRBC, is elicited as a result of the interaction of complement and antibodies (produced in response to the i.v. sensitization) directed against sRBC. Each plague is generated from a single IgM antibody-producing B cell, permitting the number of AFC present in the whole spleen to be calculated. The data are expressed as specific activity (AFC/106 spleen cells) and total spleen activity (AFC/spleen).

DATA

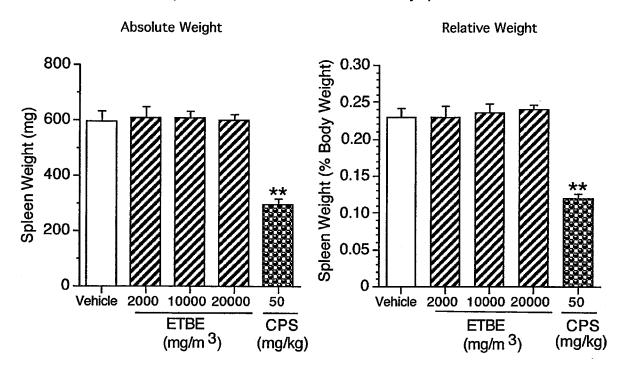
<u>Data Handling and Statistical Analysis</u>. The data obtained in this study were analyzed in accordance with standard operating procedure. Data were first tested for homogeneity of variances using the Bartlett's Chi Square Test⁴. Homogeneous data were evaluated by a parametric one-way analysis of variance⁵. When significant differences occur, exposed groups were compared to the vehicle control group using the Dunnett's t Test⁶. Non-homogeneous data were evaluated using a non-parametric analysis of variance⁵. When significant differences occur, exposed groups were compared to vehicle control group using the Gehan-Wilcoxon Test⁷ when appropriate. The Jonckheere's Test⁸ was used to test for exposure level-related trends across the vehicle and exposed groups. The positive control was compared to the vehicle control group using the Student t Test⁹. The criteria for accepting the results of the positive

control in the assay was a statistically significant ($p \le 0.05$) decrease in the response as compared to the vehicle control group.

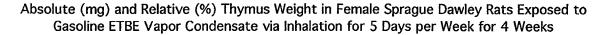
P values of 0.05 or less, as compared to the vehicle control group, were considered statistically significant and are indicated in the tables and in the figures with a single asterisk (*). A double asterisk (**) was used to indicate a p value of 0.01 or less. In the text, the word significant indicates that the response was statistically significant at $p \le 0.05$. In the tables, the abbreviation NS is used to indicate "Not Significant" for p values greater than 0.05.

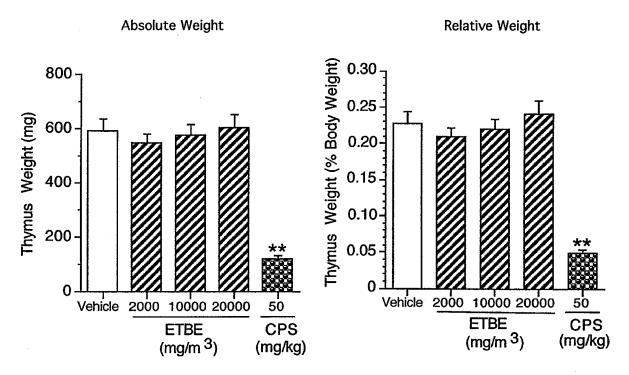
<u>Data Retention</u>. All data and records were returned to the Contracting Sponsor following acceptance of the final report. Upon completion of this study, the report and raw data for this study will be maintained in the archives of Huntingdon Life Sciences.

VII. RESULTS


TERMINAL BODY AND ORGAN WEIGHTS

The terminal body weight data from the study are shown in Table 1 for the control and Test Substance-exposed groups. The terminal body weights were obtained by Huntingdon Life Sciences PRC personnel. No statistically significant differences were observed in terminal body weights of the Gasoline ETBE Vapor Condensate-exposed animals at any exposure level as compared to the vehicle (air only) controls.


The organ weights of the control and Test Substance-exposed rats are shown in Table 1. No effect was observed, following exposure to Gasoline ETBE Vapor Condensate, on spleen or thymus weights when evaluated either as absolute or relative weight. Treatment with the positive control, cyclophosphamide, had a significant decrease of 50% on absolute spleen weight and a significant decrease of 79% on absolute thymus weight, compared to the vehicle control. In addition, the positive control, cyclophosphamide, had a significant decrease of 48% on relative spleen weight and a 79% decrease on relative thymus weight, compared to the vehicle control. Shown graphically in Figures 1 and 2 is the lack of effect on spleen and thymus weights following exposure to Gasoline ETBE Vapor Condensate.


Figure 1

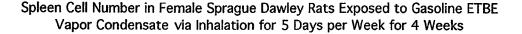
Absolute (mg) and Relative (%) Spleen Weight in Female Sprague Dawley Rats Exposed to Gasoline ETBE Vapor Condensate via Inhalation for 5 Days per Week for 4 Weeks

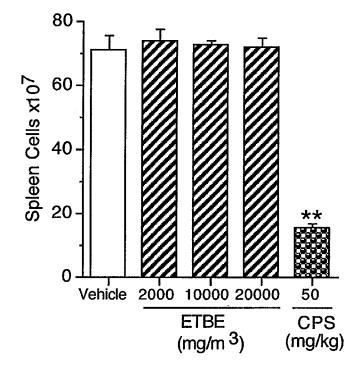
Figure 2

SPLEEN IGM ANTIBODY RESPONSE TO THE T-DEPENDENT ANTIGEN, SRBC. DAY 4 RESPONSE

The spleen IgM antibody-forming cell response, i.e. plaque assay, was evaluated on spleens removed 1 day after the last exposure, which was Day 4 after antigen sensitization. Day 4 after antigen sensitization is the peak day for the sRBC IgM AFC response in rats. Viabilities were conducted on all cell suspensions using propidium iodide (PI) and the Coulter EPICS XL-MCL Flow Cytometer. With the exception of three animals the viabilities from all samples were greater than 84%, which is consistent with the spleen cell viability routinely obtained with Sprague Dawley female rats.

In the plaque-forming cell (PFC) assays conducted by our laboratory and at the National Toxicology Program (NTP) Immunotoxicology Laboratory of the National Institute of Environmental Health Sciences, the PFC assay results are not adjusted for spleen cell viability. The reasons for this are as follows. In *in vitro* studies, which utilize a single population of cells, e.g. YAC-1 cells, correcting for viability is biologically meaningful. These cells, being of identical type, respond to stimuli in a similar manner and will die off at a similar rate. When spleens are

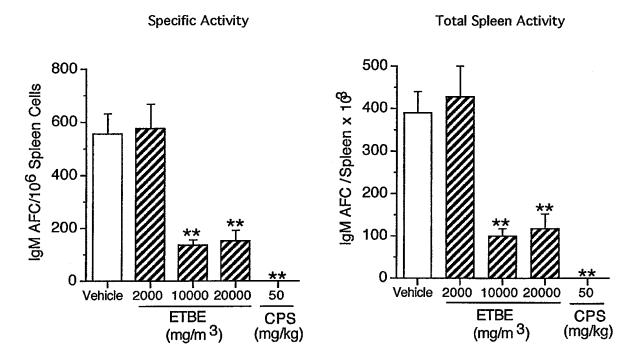

utilized as the source of cells, this represents a heterogeneous mixture of cells, including neutrophils, lymphocytes, and macrophages. Each of these cell types will respond differently to stimuli under in vitro conditions, i.e., neutrophils will die off at a faster rate than lymphocytes. Accordingly, conducting viability determinations on total spleen cells is of little biological value when one is evaluating antigen specific antibody production by plasma cells. More specifically, once the structural integrity of the spleen is compromised, as occurs in preparing a single cell suspension, the cells now in an in vitro environment begin to die with the polymorphonuclear cells dying off at a much faster rate than will either lymphocytes or macrophages. The procedure utilized in our laboratory, and by the NTP Immunotoxicology Laboratory, minimizes the time it takes from preparing the single cell suspension of spleen cells to having them incubating in the assay petri dishes. By minimizing this preparation time, we also minimize the loss of viability, which occurs the longer the cells sit in the in vitro cell culture conditions. The decrease in viability, which does occur during this time, is predominately due to the dying off of the more fragile polymorphonuclear cells and not the lymphocytes, particularly those antibodyforming cells (plasma cells) making antibody to sheep erythrocytes. This is due in part to the fact that cells undergoing high metabolic activities, such as rapidly proliferating cells or cells synthesizing antibody, are less susceptible to compounds which produce cell death than are quiescent cells. It is for these reasons that there is no correlation between viability of individual spleen cell preparations and their ability to produce antibodies to sheep erythrocytes. Correcting for viability for a homogenous population in in vitro cultures is scientifically sound; however, as indicated above, using this procedure for mixed cell populations such as those present in the spleen, will result in artificially inflated PFC values.


The results of the AFC response are shown in Table 2 and in Figures 3 and 4. As indicated above, exposure to Gasoline ETBE Vapor Condensate did not result in spleen weights that were significantly different from the vehicle control group. Furthermore, as shown graphically in Figure 3, there were no significant differences in spleen cell number following exposure to Gasoline ETBE Vapor Condensate as compared to the vehicle control group.

As expected, the positive control, cyclophosphamide (CPS), produced a 78% decrease in spleen cell number when compared to the vehicle control group.

.3

Figure 3



Shown in Table 2 and Figure 4 are the functional results from the IgM antibody-forming cell (AFC) assay. Shown in the left panel are the results when the data are expressed as specific activity and the results of the total spleen activity are shown in the right panel. As can be seen, a decrease in the IgM-antibody-forming cell response to the T-dependent antigen, sRBC, was observed when the data were evaluated as either specific activity (AFC/10⁶ spleen) or as total spleen activity (AFC/spleen). For both parameters, exposure to Gasoline ETBE Vapor Condensate reached the level of statistical significance at the middle and high exposure levels. When evaluated as specific activity, the response was suppressed 76% for the middle exposure level and 72% for the high exposure level. When evaluated as total spleen activity, the response was suppressed 74% for the middle exposure level and 70% for the high exposure level.

As anticipated, the positive control, CPS, produced a significant decrease in specific activity (100%) and total spleen cell activity (100%) when compared to the vehicle control animals.

Figure 4

IgM Antibody-Forming Cell Response to Sheep Erythrocytes in Female Sprague Dawley Rats Exposed to Gasoline ETBE Vapor Condensate via Inhalation for 5 Days per Week for 4 Weeks

VIII. CONCLUSION

Exposure of female Sprague Dawley rats to Gasoline ETBE Vapor Condensate for a period of 5 days per week for 4 weeks resulted in a statistically significant decrease in the humoral immune response to the T-dependent antigen, sheep erythrocytes, at the middle (10,000 mg/m³) and high (20,000 mg/m³) exposure levels. A no effect level was observed at the 2000 mg/m³ exposure level. Although the humoral immune functional ability of the animals was reduced, there was no statistically significant effect on body weight, spleen weight, thymus weight, or spleen cell number. Based on the immunological parameters evaluated, under the experimental conditions of the study, exposure to Gasoline ETBE Vapor Condensate adversely affected the humoral immune response of female Sprague Dawley rats.

IX. REFERENCES

- Luster MI, Portier C, Pait DG, White KL, Jr., Gennings C, Munson AE and Rosenthal GJ (1992) Risk assessment in immunotoxicology. I. Sensitivity and predictability of immune tests. *Fund. Appl. Toxicol.* 18:200-210.
- 2. Luster MI, Munson AE, Thomas P, Holsapple MP, Fenters J, White KL, Jr., Lauer LD, and Dean JD (1988). Development of a testing battery to assess chemical-induced immunotoxicity. *Fund. Appl. Toxicol.* 10:2-19.
- 3. Jerne NK, Henry C, Nordin AA, Fun H, Koros MC, and Lefkovits I (1974). Plaque-forming cells: Methodology and theory. *Trnspl. Rev.* 18:130-191.
- 4. Bartlett MS (1937). Sub-sampling for attributes. J. Roy. Stat. Soc. Suppl. 4:131-135.
- 5. Kruskall WH and Wallis WA (1952). Use of ranks in one-criterion variance analysis. *J. Amer. Stat. Assoc.* 47:583-621.
- 6. Dunnett CW (1955). A multiple comparison procedure for comparing several treatments with a control. *J. Amer. Stat. Assoc.* 50:1096-1121.
- 7. Gross AJ and Clark VA (1975). Gehan-Wilcoxon Test. In *Survival Distribution: Reliability Applications in Biomedical Sciences.* AJ Gross and VA Clark, eds. John Wiley and Sons, New York, p. 120-123.
- 8. Hollander M and Wolfe DA (1975). Jonckheere's Test: Non-parametric Statistics Methods, eds. M. Hollander and D.A. Wolfe, John Wiley and Sons, New York, p. 124-129.
- 9. Sokal RR and Rohlf FJ (1981). Biometry. Freeman, San Francisco, p. 226-231.

Parameter	Vehicle	Gas	oline ETBE Vapor	Cyclophosphamide	H/NH Trend	
	(10)	2000 (10)	10000 (10)	20000 (10)	50 mg/kg (10)	Analysis
Body Wgt (g)	259.0 ± 5.0	263.0 ± 3.2	259.4 ± 4.0	250.3 ± 3.5	247.0 ± 4.0	H NS
Spleen (mg)	597 ± 37	608 ± 41	608 ± 25	603 ± 17	299 ± 17**	H NS
% Body Wgt	0.230 ± 0.011	0.230 ± 0.014	0.235 ± 0.012	0.240 ± 0.006	0.120 ± 0.006**	H NS
Thymus (mg)	593 ± 45	549 ± 31	579 ± 40	605 ± 48	123 ± 9**	H NS
% Body Wgt	0.228 ± 0.016	0.209 ± 0.013	0.220 ± 0.013	0.241 ± 0.018	0.049 ± 0.004**	H NS

Body Weight (g) and Organ Weights (mg) in Female Sprague Dawley Rats Exposed to Gasoline ETBE Vapor Condensate via Inhalation for 5 Days per Week for 4 Weeks

Female Sprague Dawley rats were administered vehicle control (air only) or gasoline ETBE vapor condensate by inhalation via whole-body exposure for 5 days per week for 4 weeks. The positive control, cyclophosphamide, was administered i.p. on the last 4 days of exposure. On the day of sacrifice, spleens were placed in tubes containing media and sent to Richmond, VA, on ice for next day cell preparation. The rats were necropsied and indicated organs weighed. Values represent the mean \pm SE derived from the number of animals indicated in parentheses. H = homogeneous data and NH = non-homogeneous data using the Bartlett's Test for homogeneity. Homogeneous data were evaluated using a parametric analysis of variance. When significant differences occurred, exposed groups were compared to the vehicle control group using the Dunnett's t Test. The positive control was compared to the vehicle control using the Student's t Test. Values significantly different from vehicle control at p \leq 0.05 are indicated by an asterisk, while those significant at p \leq 0.01 are noted by a double asterisk. The Jonckheere's Test was used to test for dose-related trends among the vehicle and exposed groups.

Page 23 of 27

 $mg = milligrams; m^3 = cubic meter of air; kg = kilograms; Wgt = weight; NS = not significant for p values greater than 0.05.$

Key:

Table 2

Exposure	Body Wgt	Spleen Wgt	Spleen Cells	IgM AFC/	IgM AFC/Spleen
	(g)	(mg)	(x10 ⁷)	10 ⁶ Spleen Cells	(x 10 ³)
Vehicle	259.0 ± 5.0	597 ± 37	71.48 ± 4.48	556 ± 76	391 ± 48
	(10)	(10)	(10)	(10)	(10)
Gasoline ETBE V	Vapor Condensate				• •
2000 mg/m ³	263.0 ± 3.2	608 ± 41	74.21 ± 3.69	576 ± 94	427 ± 72
	(10)	(10)	(10)	(10)	(10)
10000 mg/m ³	259.4 ± 4.0	608 ± 25	72.95 ± 1.27	136 ± 23**	100 ± 17**
	(10)	(10)	(10)	(10)	(10)
20000 mg/m ³	250.3 ± 3.5	603 ± 17	72.34 ± 2.78	153 ± 39**	117 ± 35**
	(10)	(10)	(10)	(10)	(10)
Cyclophosphamic	le		• •	· · /	
50 mg/kg	247.0 ± 4.0	299 ± 17**	15.79 ± 1.21**	0 ± 0**	0 ± 0**
	(10)	(10)	(10)	(10)	(10)
H/NH	H	H	NH	NH	NH
Trend Analysis	NS	NS	NS	p≤0.01	p ≤ 0.01

Spleen Antibody-Forming Cell Response to T-dependent Antigen Sheep Erythrocytes in Female Sprague Dawley Rats Exposed to Gasoline ETBE Vapor Condensate via Inhalation for 5 Days per Week for 4 Weeks - Day 4 Response

Female Sprague Dawley rats were administered vehicle control (air only) or gasoline ETBE vapor condensate by inhalation via wholebody exposure for 5 days per week for 4 weeks. The positive control, cyclophosphamide, was administered i.p. the last 4 days of exposure. Four days prior to sacrifice, the rats were immunized (iv) with $2x10^8$ sRBC. On the day of sacrifice, spleens were placed in tubes containing media and sent to Richmond, VA, on ice for next day cell preparation. Spleens were prepared into single cell suspensions and the number of IgM sRBC antibody-forming cells was determined. Values represent the mean \pm SE derived from the number of animals indicated in parentheses. H = homogeneous data and NH = non-homogeneous data using the Bartlett's Test for homogeneity. Homogeneous data were evaluated using a parametric analysis of variance. When significant differences occurred, exposed groups were compared to the vehicle control group using the Dunnett's t Test. Non-homogeneous data were evaluated using a non-parametric analysis of variance. When significant differences occurred, exposed groups were compared to the vehicle control group using the Wilcoxon Rank Test. The positive control was compared to the vehicle control using the Student's t Test. Values significantly different from vehicle control at $p \le 0.05$ are indicated by an asterisk, while those significant at $p \le 0.01$ are noted by a double asterisk. The Jonckheere's Test was used to test for dose-related trends among the vehicle and exposed groups.

Key:

Page 24 of 27

· .

g = grams; mg = milligrams; m^3 = cubic meter of air; kg = kilograms; Wgt = weight; NS = not significant for p values greater than 0.05.

Protocol No. HLS Study No. 00-6129 Abbreviated Title: Immunological Evaluation of Gasoline ETBE Vapor Condensate ITI Study No. ITI 901 Security: Industrial Confidential

APPENDIX A

INDIVIDUAL ANIMAL DATA

Page 25 of 27

Protocol No. HLS Study No. 00-6129 Abbreviated Title: Immunological Evaluation of Gasoline ETBE Vapor Condensate

ITI Study No. ITI 901 Security: Industrial Confidential

INDIVIDUAL ANIMAL DATA ORGAN WEIGHTS GASOLINE ETBE VAPOR CONDENSATE 00-6129

ANIMAL NO	GROUP	DOSE	SEX		SPLEEN WGT (MG)	THYMUS WGT (MG)	SPLEEN WGT / % BODY WGT	THYMUS WGT / % BODY WGT
1581	GI	AIR ONLY	F	265.0	702	437	0.260	0.160
1582	GI	AIR ONLY	F	272.4	521	685	0.190	0.250
1583	G	AIR ONLY	F	267.1	535	757	0.200	0.280
1584	GI	AIR ONLY	F	247.0	637	644	0.260	0.260
1585	Gł	AIR ONLY	F	243.0	581	364	0.240	0.150
1586	GI	AIR ONLY	F	247.4	483	652	0.200	0.260
1587	GI	AIR ONLY	F	241.9	534	672	0.220	0.280
1588	Gł	AIR ONLY	F	281.6	821	765	0.290	0.270
1589	Gl	AIR ONLY	F	279.5	701	495	0.250	0.180
1590	GI	AIR ONLY	F	245.0	455	459	0.190	0.190
2571	GII	2,000 MG/M3 ETBE	F	261.6	650	556	0.250	0.210
2572	GN	2,000 MG/M3 ETBE	F	248.9	595	625	0.240	0.250
2573	GI	2,000 MG/M3 ETBE	F	273.6	664	551	0.240	0.200
2574	GN	2,000 MG/M3 ETBE	F	255.3	607	530	0.240	0.210
2575	GI	2,000 MG/M3 ETBE	F	262.7	615	715	0.230	0.270
2576	GB	2,000 MG/M3 ETBE	F	254.2	464	653	0.180	0.260
2577	GI	2,000 MG/M3 ETBE	F	279.1	895	525	0.320	0.190
2578	Gil	2,000 MG/M3 ETBE	F	275.1	491	522	0.180	0.190
2579	GII	2,000 MG/M3 ETBE	F	256.7	447	440	0.170	0.170
2580	GH	2,000 MG/M3 ETBE	F	263.1	656	375	0.250	0.140
3571	GIII	10,000 MG/M3 ETBE	F	249.8	504	487	0.200	0.190
3572	GII	10,000 MG/M3 ETBE	F	272.1	677	624	0.250	0.230
3573	GII	10,000 MG/M3 ETBE	F	264.8	560	605	0.210	0.230
3574	GII	10.000 MG/M3 ETBE	F	257.2	595	520	0.230	0.200
3575	Gill	10,000 MG/M3 ETBE	F	248.2	766	598	0.310	0.240
3576	GIII	10.000 MG/M3 ETBE	F	244.2	627	534	0.260	0.220
3577	GIII	10,000 MG/M3 ETBE	F	246.8	536	481	0.220	0.190
3578	GIR	10,000 MG/M3 ETBE	F	278.7	571	599	0.200	0.210
3579	Gili	10,000 MG/M3 ETBE	F	256.5	685	446	0.270	0,170
3580	GIII	10,000 MG/M3 ETBE	F	275.3	564	894	0.200	0.320
4581	GⅣ	20,000 MG/M3 ETBE	F	259.3	647	602	0.250	0.230
4582	GĪV	20,000 MG/M3 ETBE	F	239.9	512	483	0.210	0.200
4583	GIV	20,000 MG/M3 ETBE	F	246.9	612	661	0.250	0.270
4584	GIV	20.000 MG/M3 ETBE	F -	260.0	579	402	0.220	0.150
4585	GIV	20.000 MG/M3 ETBE	F	264.4	612	760	0.230	0.290
4586	GIV	20,000 MG/M3 ETBE	F	251.1	577	500	0.230	0.200
4587	GIV	20,000 MG/M3 ETBE	F	253.8	644	601	0.250	0.240
4588	GIV	20.000 MG/M3 ETBE	F	236.3	549	613	0.230	0.260
4589	GIV	20,000 MG/M3 ETBE	F	258.6	698	928	0.270	0.360
4590	GIV	20.000 MG/M3 ETBE	F	232.9	597	501	0.260	0.210
5551	GV	50 MG/KG CYCLOPHOSPHAMIDE	F	246.1	328	133	0.130	0.050
5552	GV	50 MG/KG CYCLOPHOSPHAMIDE	Ē	259.8	371	104	0.140	0.040
5553	GV	50 MG/KG CYCLOPHOSPHAMIDE	Ē	229.1	299	165	0.130	0.070
5554	GV	50 MG/KG CYCLOPHOSPHAMIDE	Ē	251.7	232	132	0.090	0.050
5555	GV	50 MG/KG CYCLOPHOSPHAMIDE	F	242.1	220	100	0.090	0.040
5556	GV	50 MG/KG CYCLOPHOSPHAMIDE	F	266.8	360	139	0.130	0.050
5557	ĞV	50 MG/KG CYCLOPHOSPHAMIDE	F	260.9	266	104	0.100	0.040
5558	GV	50 MG/KG CYCLOPHOSPHAMIDE	F	238.7	337	74	0.140	0.030
5559	ĞV	50 MG/KG CYCLOPHOSPHAMIDE	Ē	232.4	314	134	0.140	0.060
5560	ĞV	50 MG/KG CYCLOPHOSPHAMIDE	÷	242.0	262	148	0.110	0.060
			•	E-TE-ID		071	0.110	0.000

Protocol No. HLS Study No. 00-6129 Abbreviated Title: Immunological Evaluation of Gasoline ETBE Vapor Condensate ITI Study No. ITI 901 Security: Industrial Confidential

INDIVIDUAL ANIMAL DATA IGM AFC ASSAY GASOLINE ETBE VAPOR CONDENSATE 00-6129

ANIMAL NO	GROUP	DOSE	SEX	IGM AFC/10 ⁶ SP.C.	IGM AFC/SPLEEN 103	CELLS/SPLEEN 107	SPLEEN WGT (MG)	BODY WGT (G)
1581	GI	AIR ONLY	F	607	483	79.56	702	265.0
1582	GI	AIR ONLY	F	292	147	50.28	521	272.4
1583	GI	AIR ONLY	F	216	156	72.12	535	267.1
1584	Gł	AIR ONLY	F	750	549	73.20	637	247.0
1585	GI	AIR ONLY	F	670	456	68.10	581	243.0
1586	GI	AIR ONLY	F	377	252	66.90	483	247.4
1587	GI	AIR ONLY	F	718	501	69.78	534	241.9
1588	GI	AIR ONLY	F	492	480	97.50	821	281.6
1589	GI	AIR ONLY	F	428	366	85.44	701	279.5
1590	GI	AIR ONLY	F	1005	522	51.96	455	245.0
2571	Gli	2,000 MG/M ³ ETBE	F	1119	870	77.76	650	261.6
2572	Gli	2,000 MG/M ³ ETBE	F	358	288	80.40	595	248.9
2573	GH	2,000 MG/M ³ ETBE	F	965	654	67.80	664	273.6
2574	GH	2,000 MG/M ³ ETBE	F	840	675	80.34	607	255.3
2575	Gl	2,000 MG/M ³ ETBE	F	557	408	73.20	615	262.7
2576	Glł	2,000 MG/M ³ ETBE	F	562	324	57.66	464	254.2
2577	GII	2,000 MG/M ³ ETBE	F	407	387	95.10	895	279.1
2578	GII	2,000 MG/M ³ ETBE	F	300	204	67.92	491	275.1
2579	Gli	2,000 MG/M ³ ETBE	F	335	195	58.20	447	256.7
2580	Gli	2,000 MG/M ³ ETBE	F	315	264	83.70	656	263.1
3571	GIII	10,000 MG/M3 ETBE	F	186	141	75.90	504	249.8
3572	GIII	10,000 MG/M ³ ETBE	F	151	123	81.72	677	272.1
3573	GIII	10,000 MG/M ³ ETBE	F	70	48	68.58	560	264.8
3574	GIII	10,000 MG/M ³ ETBE	F	122	90	73.50	595	257.2
3575	GIII	10,000 MG/M ³ ETBE	F	49	36	73.56	766	248.2
3576	GIII	10,000 MG/M ³ ETBE	F	236	174	73.80	627	244.2
3577	GIII	10,000 MG/M ³ ETBE	F	129	96	74.16	536	246.8
3578	GIN	10,000 MG/M ³ ETBE	F	47	33	70.08	571	278.7
3579	GIN	10,000 MG/M ³ ETBE	F	256	177	69.12	685	256.5
3580	GIN	10.000 MG/M ³ ETBE	F	117	81	69.06	564	275.3
4581	GIV	20.000 MG/M ³ ETBE	F	464	402	86.64	647	259.3
4582	GIV	20,000 MG/M ³ ETBE	F	100	60	60.00	512	239.9
4583	GIV	20,000 MG/M ³ ETBE	F	30	21	70.92	612	246,9
4584	GIV	20,000 MG/M ³ ETBE	F	106	72	68.10	579	260.0
4585	GIV	20,000 MG/M ³ ETBE	F	131	96	73.32	612	264.4
4586	GIV	20.000 MG/M ³ ETBE	F	180	138	76.50	577	251.1
4587	GIV	20,000 MG/M ³ ETBE	F	32	24	73.92	644	253.8
4588	GIV	20,000 MG/M ³ ETBE	F	128	84	65.82	549	236.3
4589	GIV	20,000 MG/M ³ ETBE	F	211	180	85.26	698	258.6
4590	GIV	20,000 MG/M ³ ETBE	F	148	93	62.88	597	232.9
5551	GV	50 MG/KG CYCLOPHOSPHAMIDE	F	0	õ	19.74	328	246.1
5552	GV	50 MG/KG CYCLOPHOSPHAMIDE	F	õ	õ	16.44	371	259.8
5553	GV	50 MG/KG CYCLOPHOSPHAMIDE	F	õ	õ	17.58	299	229.1
5554	GV	50 MG/KG CYCLOPHOSPHAMIDE	F	ō	Ō	15.66	232	251.7
5555	GV	50 MG/KG CYCLOPHOSPHAMIDE	F	0	0	9.66	220	242.1
5556	GV	50 MG/KG CYCLOPHOSPHAMIDE	F	. 0	0	20.22	360	266.8
5557	GV	50 MG/KG CYCLOPHOSPHAMIDE	F	0	0	10.50	266	260.9
5558	GV	50 MG/KG CYCLOPHOSPHAMIDE	F	0	0	19.98	337	238.7
5559	GV	50 MG/KG CYCLOPHOSPHAMIDE	F	0	0	12.54	314	232.4
5560	GV	50 MG/KG CYCLOPHOSPHAMIDE	F	0	0	15.54	262	242.0

H	untinge	lon Life	Sciences
---	---------	----------	----------

00-6129 211-ETBE-S Page 1226 Final Report

Animal Exposure and Animal Data	
Preface	Appendix B

INTRODUCTION: The following is data generated at Huntingdon Life Sciences, East Millstone, NJ. The separately issued main study report should be referenced for details of the procedures used for test atmosphere generation/characterization and animal evaluations.

STUDY DATES:	Date of Animal Receipt:	4 October 2001
	Experimental Initiation Date:	23 October 2001 (in-life)
	Experimental Completion Date:	20 November 2001 (in-life)
	Draft Report Date:	19 June 2002

EXPOSURES AND IN-LIFE SUMMARY: The actual measured results during the exposures were comparable to the targeted exposure levels. There were no exposure-related effects seen in the test animals with regards to body weights and feed consumption.

TABLE OF CONTENTS

TABLES

A.	Chamber Monitoring Results	1227
B.	Summary of Clinical Observations (pretest only)	1235
C.	Mean Body Weights (grams)	1236
	Mean Body Weight Change (grams)	
Ε.	Mean Feed Consumption Values (grams/kg/day)	
F.	Individual Clinical Observations (pretest only)	
G.	Individual Body Weights (grams)	1244
H.	Individual Body Weight Change (grams)	
I.	Individual Feed Consumption Values (grams/kg/day)	1254
J.	Animal Termination History	1259

						namber Mon	2							
						umulative	-							
					Gro	up IA - 0	(air onl	y) mg/m³	- 					
			•						-		~ '	Chamber Er		
_		_							-	article etermina		Mean Temperature Humidity		
Day	Date	Exposure Number	Nominal	Ana. Mean	Tytical C	hamber Con		.on	MMAD	GSD	TMC	Temperature	Rumiarcy	
		NUMBer	(mg/m ³)	(mg/m ³)					(um)	630	(mg/m^3)	(°C)	(%)	
									(μ)		(mg/m)	25	53	
0.	23-Oct-01	1	0	0	0	0	0	0						
1	24-Oct-01	2	0	0	0	0	0	0		1		25	50	
2	25-Oct-01	3	0	0	0	0	0	0				25	50	
3	26-Oct-01	4	0	0	0	0	0	0				25	54	
6	29-0ct-01	5	0	0	0	0	0	0	1.482	1.752	1.72E-03	25	50	
7	30-Oct-01	б	0	0	0	0	0	0				24	54	
8	31-Oct-01	7	0	0	0	0	0	0				24	53	
9	1-Nov-01	8	0	0	0	0	0	0	0.9534	2.306	6.33E-03	24	52	
10	2-Nov-01	9	0	0	0	0	0	0				24	55	
13	5-Nov-01	10	0	0	0	0	0	0				24	52	
14	6-Nov-01	11	0	0	0	0	0	0				25	53	
15	7-Nov-01	12	0	0	0	0	0	0				25	53	
16	8-Nov-01	13	0	0	0	0	0	0	0.9473	2,112	1.95E-03	25	52	
17	9-Nov-01	14	0	0	0	0	0	0				25	52	
20	12-Nov-01	15	0	0	0	0	0	0				25	52	
21	13-Nov-01	16	0	- 0	0	0	0	0				24	53	
22.	14-Nov-01	17	0	0	0	0	0	0				24	52	
23	15-Nov-01	18	0	0	0	0	0	0	0.8686	2.044	4.56E-03	24	52	
24	16-Nov-01	19	0	0	0	0	0	0				25	49	
27	19-Nov-01	20	0	0 0 0 0 0								24	49	
		Mean	0	0 1					1.063	2.054	3.64E-03	24.6	52.0	
		S.D.	. 0			0			0.282	0.230	2.21E-03	0.5	1.7	

Table A

.

.*

Page 1227

Ta	ble	А
- 10	シー・ウ	-

.

						hamber Mor umulative	2						
						oup IB - 0	-		I				
						•			1			Chamber Er	vironment
								-	P	article	Size	Mean	
Day	Date	Exposure	Nominal	Ana	lytical Chamber Concentration					eterminat		Temperature	Humidit
		Number		Mean		Indivi			MMAD	GSD .	TMC		
		·	(mg/m ³)	(mg/m ³)		(mg/	(m ³)		(µm)		(mg/m ³)	(°C)	(%)
0	23-Oct-01	1	0	0	0	0	0	0				24	56
1	24-Oct-01	2	0	0	0	0	0	0				24	53
2	25-Oct-01	3	· 0	0	0	0	0	0				23	53
3	26-Oct-01	4	0	0	0	0	0	0				24	57
6	29-Oct-01	5	0	0	0	0	0	0	5.659	2.488	2.88E-03	24	52
7	30-Oct-01	6	0	0	0	0	0	o				24	53
8	31-Oct-01	7	0	0	0	0	0	· 0				24	54
9	1-Nov-01	8	0	0	0	0	0	0	0.8546	2.214	5.97E-03	24	53
10	2-Nov-01	9	0	0	0	0	0	0				24	55
13	5~Nov-01	10 ·	0	0	0	0	0	0				24	52
14	6-Nov-01	11	0	0	0	0	0	0				24	54
15	7-Nov-01	12	0	0	0	0	0	0				24 .	56
16	8-Nov-01	13	0	0	0	- 0	0	0	1.738	2,383	5.12E-03	24	54
17	9-Nov-01	• 14	0	0	0	0	0	0				24	53
20	12-Nov-01	· 15	0	0	0	0	0	0				24	54
21	13-Nov-01	16	0	0	0	0	0	0				. 24	55
22	14-Nov-01	17	0	0	0	0	0	0				24	53
23	15-Nov-01	18	ο	0	0	0	0	0	0.9337	2.189	6.73E-03	24	54
24	16-Nov-01	19	ο	0	0	0	0	0				24	51
27	19-Nov-01	20	0	0	0	0	0	0				25	50
		Mean	0			0			2.296	2.319	5.18E-03	24.0	53.6
		S.D.	o			0			2.277	0.142	1.67E-03	0.3	1.7

Page 1228

ole	А
JTE	~

.

.

.

.

.

.

						hamber Mor umulative	-						
						Group IIA	- 2,000	mg/m ³	<u> </u>				
					·							Chamber En	vironment
									4	article		Mean	
Day	Date	Exposure	Nominal		lytical C	Chamber Co		on		eterminat		Temperature	Humidity
		Number	(mg/m ³)	Mean (mg/m ³)		Indiv: (mg/			MMAD (µm)	GSD	TMC (mg/m ³)	(°C)	(%)
0	23-Oct-01	1	2090	2038	2280	2160	1960	1750				23	50
1	24-Oct-01	2	2160	2015	1880	2110	2050	2020				23	47
2	25-Oct-01	3	2270	2160	2020	1960	2350	2310				23	47
3	26-Oct-01	4	2090	2023	2010	2060	2060	1960				23	50
6	29-Oct-01	5	2110	1988	1850	2030	2040	2030	2.045	2.243	2.28E-03	24	46
7	30-Oct-01	6	2030	2020	2170	2050	1900	1960				24	49
8	31-Oct-01	7	2080	1990	1910	1950	2090	2010				24	50
9	1-Nov-01	8	2060	1940	1860	1760	2180	1960	0.7630	1.745	3.75E-03	24	48
10	2-Nov-01	9	2120	2010	2040	1980	2000	2020				24	50
13	5-Nov-01	10	2030	2025	2170	2020	1990	1920				24	48
14	6-Nov-01	11	2080	1995	1860	1960	2150	2010				24	49
15	7-Nov-01	12	2100	2063	2060	2090	2040	2060				24	45
16	8-Nov-01	13	2220	2195	2270	2270	1840	2400	0.8737	1.804	2.31E-03	24	47
17	9-Nov-01	14	2310	2293	2180	2030	2540	2390				24	47
20	12-Nov-01	15	2140	2048	2060	1960	2140	2030				24	49
21	13-Nov-01	16	2060	1918	1950	1920	1860	1940				23	. 50
22	14-Nov-01	17	2130	2055	2060	1930	2200	2030				24	48
23	15-Nov-01	18	2120	2043	2230	1970	2110	1860	0.8069	1.867	4.75E-03	24	48
24	16-Nov-01	19	2100	2053	1970	1800	2160	2280				24	47
27	19-Nov-01	20	1970	1935	1690	1730	1970	2350	<u> </u>			24	46
		Mean	2114			2040			1.122	1.915	3.27E-03	23.8	48.1
		S.D.	80			161			0.617	0.224	1.20E-03	0.4	1.5

Page 1229

Table A

,

۰.

•

GASOLINE ETBE VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS

00-6129

						Chamber Mo Cumulative	,						
						Group II	в - 2,000) mg/m ³					
												Chamber E	nvironment
									-	article		Me	
Day	Date	Exposure	Nominal		lytical C	ytical Chamber Concentration			- I	eterminat		Temperature	Humidity
		Number		Mean					MMAD	GSD	TMC	(8-2)	<i>(</i> 0)
			(mg/m ³)	(mg/m ³)		(mg/			(µm)		(mg/m ³)	(°C)	(%)
0	23-Oct-01	1	2090	1875	1620	1980	1880	2020				23	54
1	24-Oct-01	2	2160	2043	2060	2060	2010	2040				23	51
2	25-Oct-01	3	2270	2160	2070	1990	2320	2260				23	50
3	26-0ct-01	4	2090	2020	2030	1990	1920	2140				23	53
6	29-Oct-01	5	2110	1995	2160	1980	1880	1960	12.38	3.012	6.67E-03	23	50
7	30-Oct-01	6	2030	2000	2030	1970	2030	1970				23	51
8	31-Oct-01	· 7	2080	1983	2220	1990	1690	2030				23	53
9	1-Nov-01	8	2090	2030	1990	1820	2280	2030	0.8035	2.139	7.47E-03	23	52
10	2-Nov-01	· 9	2120	2048	2140	2040	1970	2040				23	53
13	5-Nov-01	10	2030	1983	1890	2020	2010	2010				23	49
14	6-Nov-01	11	2080	2058	1960	1850	2280	2140				23	53
15	7-Nov-01	12 ,	2100	1935	1990	1890	1930	1930				23	52
16	8-Nov-01	13	. 2220	2088	2190	2300	1740	2120	0.7894	1.578	2.04E-03	24	51
17	9-Nov-01	14	2310	1875	1640	1910	1920	2030				23	51
20	·12-Nov-01	15	2140	2013	1940	1890	2020	2200				23	52
21	13-Nov-01	16	2060	1948	1980	1960	2010	1840				22	52
22	14-Nov-01	17	2130	1935	2120	1790	1890	1940				22	50
23	15-Nov-01	18	2120	2143	2160	1980	2170	2260	0.8338	2.476	7.31E-03	23	50
24	16-Nov-01	19	2100	2050	2010	1960	2190	Ż040				23	48
27	19-Nov-01	. 20	1970	1958	1730	2030	2200	1870				23	47
	<u> </u>	Mean	2115			2007			3.702	2,301	5.87E-03	23.0	51.1
		S.D.	79			145			5.786	0.601	2.58E-03	0.4	1.8

.

	Chamber Monitoring Results Cumulative Exposure Record												
						Group II:	-		L .				
						or o			, <u>.</u>		······	Chamber E	nvironment
								P	article S	Size	Ме	an	
Day	Date	Exposure	Nominal		lytical (ytical Chamber Concentration			De MMAD	terminat		Temperature	Humidity
		Number	(mg/m ³)	Mean (mg/m ³)		Individual (mg/m ³)				GSD	TMC (mg/m ³)	(10)	(0)
0	23-0ct-01	1	(mg/m) 11600	(mg/m) 10240	9720	(mg/ 10700	m) 9820	10700	(µm)		(mg/m)	(°C)	(%)
1		1 2	11000		9720 9920							23	50
2	24-Oct-01 25-Oct-01	3	9890	9938 • 8895	9920 9430	10500 8040	9230 9130	10100 8980				24	47 47
2	25-0ct-01 26-0ct-01	4	9890 11600	10080	9430 9000	10600	10600	10100				23 24	47
5	29-0ct-01	4 5	11800	10080	10400	10500	10100	10100	2.117	2,220	2.09E-03		46 45
_					10400.		10100		2.11/	2.220	2.096-03	24	
7	30-Oct-01	6	11000	10180		10100		10100				24	48
8	31-Oct-01	7	10200	9153	9990	8710	8930	8980	0.0407	0 640	5 005 03	24	49
9	1-Nov-01	8	11000	10300	9790	10500	10400	10500	0.9487	2.649	5.23E-03	24	48
10	2-Nov-01	9	11300	10450	10500	9790	10800	10700				24	52
13	5-Nov-01	10	11000	10380	10700	9530	10800	10500				24	47
14	6-Nov-01	. 11	10800	9788	10100	9490	10100	9460				24	47
15	7-Nov-01	12	10200	10040	10100	10500	9060	10500				24	47
16	8-Nov-01	13	9970	9823	10000	10800	8900	9590	3.553	2.083	1.22E-02	24	46
17	9-Nov-01	14	11300	10600	9890	10800	11100	10600				24	45
20	12-Nov-01	15	10900	10220	10500	10100	10400	9860				24	45
21	13-Nov-01	16 .	10500	9645	9890	9130	10100	9460		•		24	48
22	14-Nov-01	17	11000	9945	10100	10100	9790	9790				23	49
23	15-Nov-01	18	10200	9690	9790	9790	9790	9390	0.7951	2.370	1.06E-02	24	49
24	16-Nov-01	19	10400	9413							· · ·	24	47
27	19-Nov-01	20	11500	10520	9790	11000	10500	10800				24	46
		Mean	10833			9978			1.853	2.331	7.53E-03	23.9	47.4
		S.D.	541			632			1.278	0.243	4.69E-03	0.4	1.8

Table A

Page 1231

						hamber Mor	-							
						umulative	-							
		T				Group IIIE	- 10,000) mg/m ³				1		
									_		~ /	Chamber Environmen Mean		
Day	Date	Exposure	Nominal	3	Analytical Chamber Concentration				4	Particle etermina		Mea Temperature	1	
Day	Date	Number	Nominar	Mean					MMAD	GSD	TMC	remperature	numitarel	
		Number	(mg/m ³)	(mg/m^3)					(µm)	000	(mg/m ³)	(°C)	(%)	
0	23-Oct-01	1	11600	10780	11200	10700	10100	11100				24	47	
1	24-Oct-01	2	11000	10080	10800	10500	9560	9460				24	47	
2	25-Oct-01	3	9890	9985	10100	8850	9890	11100				24	46	
3	26-0ct-01	4	11600	10150	9790	10100	10600	10100				24	46	
6	29-Oct-01	5	11300	10030	10100	9960	9960	10100	5.488	2.816	3.57E-03	24	44	
. 7	30-Oct-01	6	11000	10530	11000	10100	10800	10200				24	44	
8	31-Oct-01	7	10200	9230	10300	8910	. 8950	8760				24	46	
9	1-Nov-01	8	11000	10020	10500	9990	9860	9720	0.7852	1.929	3.90E-03	24	47	
10	2-Nov-01	9	11300	10400	10500	10400	10500	10200				24	48	
13	5-Nov-01	10	11000	10120	10100	9460	10500	10400				24	44	
14	6-Nov-01	11	10800	9728	10100	9020	10000	9790				24	46	
15	7-Nov-01	12	10200	9790	9990	10100	8970	10100				24	47	
16	8-Nov-01	13	9970	9483	10000	10200	8110	9620	0.8095	2.085	4.71E-03	24	46	
17	9-Nov-01	14	11300	10330	9530	10800	10300	10700				24	45	
20	12-Nov-01	15	10900	10030	9620	10300	10200	10000				24	44	
21	13-Nov-01	16	10500	9293	10100	8350	9030	9690				23	46	
22	14-Nov-01	17	11000	10370	10100	11100	9990	10300				23	46	
23	15-Nov-01	18	10200	9795	9720	10000	10000	9460	0.7347	2.097	1.04E-02	23	45	
24	16-Nov-01	· 19	10400	9755	9460	9460	10000	10100				24	44	
27	19-Nov-01	20	11500	10160	9920	10500	10100	10100				23	45	
		Mean	10833			10002			1.954	2.232	5.65E-03	23.8	45.7	
		S.D.	541			604			2.356	0.397	3.21E-03	0.4	1.2	

Table A

Page 1232

Page 1233

GASOLINE ETBE VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS

.

Table A

,

.

						hamber Mon umulative	-				- , · · · · · · · · · · · · · · · · · ·		
						Group IVA	- 20,000	mg/m ³					
											······	Chamber En	vironment
										article	Size	Mean	
Day	Date	Exposure	Nominal	Ana	lytical Chamber Concentration				De	eterminat		Temperature	Humidity
		Number	3	Mean		Indiv			MMAD	GSD	TMC		
			(mg/m ³)	(mg/m ³)		(mg/			(µm)		(mg/m ³)	(°C)	(%)
0	23-Oct-01	1	19100	19000	21000	18100	18400	18500				25	52
1	24-Oct-01	2	19900	19980	19300	19700	21500	19400				25	52
2	25-Oct-01	· 3	19600	20250	22300	19000	19700	20000				25	50
3	26-Oct-01	4	20300	19530	19600	19600	19600	19300				25	49
6	29-Oct-01	5	19600	20250	18500	20400	22300	19800	1.051	1.750	7.17E-04	25	48
7	30-Oct-01	6	20500	20030	19700	20900	20100	19400				25	50
8	31-Oct-01	7	19900	19630	19400	19800	19300	20000				24	50
9	1-Nov-01	8	20200	19580	19600	20100	19100	19500	0.8223	1.803	4.14E-03	25	49
10	2-Nov-01	9	19200	19800	19700	19700	20100	19700				24	54
13	5-Nov-01	10	20200	20250	20400	19400	19800	21400				24	50
14	6-Nov-01	11	19600	19650	20100	19400	19500	19600		-		26	48
15	7-Nov-01	12	20200	19480	19400	19400	19700	19400				25	51
16	8-Nov-01	13	20700	19680	17100	21400	21400	18800	0.9253	1.866	2.15E-03	25	49
17	9-Nov-01	14	20200	19330	19700	16000	21200	20400				26	47
20	12-Nov-01	15	20400	19630	18900	21400	19300	18900				25	47
21	13-Nov-01	16	19900	19900	18500	20300	20000	20800.				24	49
22	14-Nov-01	17	19700	19630	20200	19000	19400	19900				24	51
23	15-Nov-01	18	19100	18880	18000	18800	19300	19400	0.8504	2.121	4.80E-03	24	51
24	16-Nov-01	19	20000	20680								25	48
27	19-Nov-01	20	19400·	19050								25	48
		Mean	19885			19708			0.912	1.885	2.95E-03	24.8	49.7
		S.D.	465			1044		•	0.102	0.164	1.87E-03	0.6	1.8

Table A

.

		·····				hamber Mor	-					·	
						umulative	*						
	· · · · · ·					Group IVB	- 20,000	mg/m ³					
									_	article	Sino	Chamber En Mea	
Day	Date	Exposure	Nominal	Ana	Analytical Chamber Concentration					eterminat		Temperature	Humidity
201	2440	Number		Mean					MMAD	GSD	TMC	Tempeldedie	indina da e j
			(mg/m ³)	(mg/m ³)		(mg/	′m ³)		(mu)		(mg/m ³)	(°C)	(%)
0.	23-Oct-01	· 1	19100	20630	17700	20500	22700	21600				24	51
1	24-Oct-01	2	19900	19150	20800 18800 18200 18800							24	51
2	25-Oct-01	3	19600	18750	50 17200 18800 18900 20100							24	51
3	26-0ct-01	4	20300	19330	18500	20100	19600	19100				24	50
6	29-0ct-01	5	19600	18930							2.73E-03	24	49
7	30-Oct-01	6	20500	20030	19600	20800	.20400	19300				25	49
8	31-Oct-01	7	19900	19500	19100	19800	19200	19900				25	49
9	1-Nov-01	8	20200	19850	19700	20100	19700	19900	0.7851	2.273	5.82E-03	25	48
10	2-Nov-01	9	19200	19750	19700	20200	20200	18900				25	53
13	5-Nov-01	10	20200	20750	20800	20800	21200	20200			,	25	48
14	6-Nov-01	11	19600	19080	17300	19900	19900	19200				24	48
15	7-Nov-01	12	20200	19880	19900	19400	20000	20200				24	51
16	8-Nov-01	13	20700	21280	18400	22000	23900	20800	0.8337	1.690	2.09E-03	24	49
17	9-Nov-01	14	20200	20050	20800	16000	22000	21400				24	49
20	12-Nov-01	15	20400	20300	19500	20400	20800	20500				24	49
21	13-Nov-01	16	19900	19750	19700	20100	19500	19700				25	49
22	14-Nov-01	17	19700	19600	18200	19700	19900	20600				25	49
23	15-Nov-01	18	19100	20480	20100	20200	20800	20800	0.9512	3.722	1.36E-02	25	49
24	16-Nov-01	19	20000	19080								25	47
27	19-Nov-01	20	19400	18930	18930 17200 20100 20100 18300							25	48
		Mean	19885			19753			2.878	2.707	6.06E-03	24.5	49.4
		S.D.	465			1268			4,043	0.902	5.28E-03	0.5	1.4

00~6129

.

19-FEB-2009 11:45

.

Huntingdon Life Sciences 00-61291 Immunotoxicity Sub-Group

Page 1235

TABLE B

GASOLINE ETBE VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

FEMALES		SUMMARY OF CLINICAL OBSERVATIONS
	DAY OF STUDY GROUP# -11 TOTAL	
# OF ANIMALS EXAMINED	1 10 2 10 3 10 4 10 5 10	
NORMAL		
WITHIN NORMAL LIMITS	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	

Page 1236

TABLE C

GASOLINE ETBE VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

	:	DOSE GROUP:	I	II	III	IV	v
DOSE LEVEL (MG/M3):		0	2000	10000	20000	POSITIVE CONTROL	
	_				105	105	104
WEEK	-1	MEAN		125	125	125 5.2	124 6.3
		S.D.	5.4		5.1		
		N	10	. 10	10	10	10
WEEK	0	MEAN	189	188	187	187	191
		S.D.	13.9	8.9	7.1	8.2	8.5
		N	10	10	10	10	10
WEEK	1	MEAN	210	210	208	206	217
	_	S.D.	17.8	8.8	8.4	11.2	10.6
		N	10	10	10	10	10
WEEK	2	MEAN	230	232	231	224	237
	-	S.D.	17.8	7.1	10.7	10.0	11.6
		N	10	10	10	10	10
WEEK	2	MEAN	250	249	246	238	254
	~	S.D.	15.8	7.5	9.1	12.8	13.4
		N	10	10	10	10	10
WEEK	4	MEAN	259	263	259	250	247
*******	•	S.D.	15.8	10.0	12.6	10.9	12.6
		N N	10	10	10	10	10

No statistically significant differences

Page 1237

.

TABLE D

GASOLINE ETBE VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

	DOSE GROUP: DOSE LEVEL (MG/M3):			I	II	III	IV	v
				0	2000	10000	20000	POSITIVE CONTROL
WEEK	0 TO	1	MEAN	20	22	21	19	26*
			S.D.	4.6	5.1	3.8	5.4	4.9
			N	10	10	10	10	10
WEEK	0 ТО	2	MEAN	41	44	44	37	46
			S.D.	5.3	6.1	5.2	5.5	7.7
			N	10	10	10	10	10
WEEK	0 TO	3	MEAN	61	61	59	51*	64
			S.D.	8.1	6.0	5.3	7.3	7.5
			N	10	10	10	10	10
WEEK	о то	4	MEAN	70	75	72	63	56**
			S.D.	4.7	9.3	9.1	5.3	7.1
			N	10	10	10	10	10

Statistical key: * = p<0.05 ** = p<0.01

1

.

Huntingdon Life Sciences 00-61291 Immunotoxicity Sub-Group

Page 1238

TABLE E

GASOLINE ETBE VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

FEMALES			MEAN FEED CON	SUMPTION VALUES	(GRAMS/KG/DAY)		
	DOSE LEVEL (GROUP: MG/M3):	I O	II 2000	III 10000	IV 20000	V POSITIVE CONTROL
WEEK	0	MEAN S.D. N	129 4.8 7	132 10.6 10	131 9.3 8	129 7.9 10	132 8.0 10
WEEK	1	MEAN S.D. N	95 4.2 10	101 7.5 10	103* 3.3 8	98 7.4 10	105** 4.6 10
WEEK	2	MEAN S.D. N	90 5.1 10	99 16.9 10	97 6.2 10	90 3.2 10	98* 5.3 9
WEEK	3	MEAN S.D. N	85 6.5 10	87 4.7 10	91 7.5 10	86 3.0 10	91 8.3 10
WEEK	4	MEAN S.D. N	77 5.7 10	85* 5.4 9	84* 6.2 10	82 4.5 9	73 5.3 10

Statistical key: * = p<0.05 ** = p<0.01

.

Huntingdon Life Sciences 00-61291 Immunotoxicity Sub-Group

TABLE F

GASOLINE ETBE VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

INDIVIDUAL CLINICAL OBSERVATIONS

FEMALES	GROUP I 0 MG/M3					
ANIMAL#	OBSERVATIONS	DAY OF STUDY	- 1 1			
1581	WITHIN NORMAL LIMITS		P			
1582	WITHIN NORMAL LIMITS		P			
1583	WITHIN NORMAL LIMITS		P			
1584	WITHIN NORMAL LIMITS		P			
1585	WITHIN NORMAL LIMITS		P			
1586	WITHIN NORMAL LIMITS		P			
1587	WITHIN NORMAL LIMITS		P			
1588	WITHIN NORMAL LIMITS		P			
1589	WITHIN NORMAL LIMITS		P			
1590	WITHIN NORMAL LIMITS		p			

CODE: 1-SLIGHT 2-MODERATE 3-MARKED P-PRESENT

Page 1239

TABLE F

GASOLINE ETBE VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

INDIVIDUAL CLINICAL OBSERVATIONS

FEMALES	GROUP II 2000 MG/M3		
ANIMAL#	OBSERVATIONS	DAY OF STUDY	- 1 1
2571	WITHIN NORMAL LIMITS		P
2572	WITHIN NORMAL LIMITS		P
2573	WITHIN NORMAL LIMITS		P
2574	WITHIN NORMAL LIMITS		P
2575	WITHIN NORMAL LIMITS		P
2576	WITHIN NORMAL LIMITS		P
2577	WITHIN NORMAL LIMITS		P
2578	WITHIN NORMAL LIMITS		P
2579	WITHIN NORMAL LIMITS		P
2580	WITHIN NORMAL LIMITS		P

CODE: 1-SLIGHT 2-MODERATE 3-MARKED P-PRESENT

.

Page 1240

Page 1241

TABLE F

GASOLINE ETBE VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

INDIVIDUAL CLINICAL OBSERVATIONS

FEMALES	GROUP III 10000 MG/M3					
ANIMAL#	OBSERVATIONS	DAY OF STUDY	- 1 1			
3571	WITHIN NORMAL LIMITS		P			
3572	WITHIN NORMAL LIMITS		P			
3573	WITHIN NORMAL LIMITS		P			
3574	WITHIN NORMAL LIMITS		P			
3575	WITHIN NORMAL LIMITS		P			
3576	WITHIN NORMAL LIMITS		P			
3577	WITHIN NORMAL LIMITS		p			
3578	WITHIN NORMAL LIMITS		P			
3579	WITHIN NORMAL LIMITS		P			
3580	WITHIN NORMAL LIMITS		P			

CODE: 1-SLIGHT 2-MODERATE 3-MARKED P-PRESENT

.

19-FEB-2009 11:49

Huntingdon Life Sciences 00-61291 . Immunotoxicity Sub-Group

Page 1242

TABLE F

GASOLINE ETBE VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

INDIVIDUAL CLINICAL OBSERVATIONS

FEMALES	GROUF IV 20000 MG/M3		
ANIMAL#	OBSERVATIONS	DAY OF STUDY	- 1 1
4581	WITHIN NORMAL LIMITS		P
4582	WITHIN NORMAL LIMITS		P
4583	WITHIN NORMAL LIMITS		P
4584	WITHIN NORMAL LIMITS		P
4585	WITHIN NORMAL LIMITS		P
4586	WITHIN NORMAL LIMITS		P
4587	WITHIN NORMAL LIMITS		P
4588	WITHIN NORMAL LIMITS		р Г
4589	WITHIN NORMAL LIMITS		p ·
4590	WITHIN NORMAL LIMITS		P

.

CODE: 1-SLIGHT 2-MODERATE 3-MARKED P-PRESENT

· .

.

Page 1243

TABLE F

GASOLINE ETBE VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

INDIVIDUAL CLINICAL OBSERVATIONS

FEMALES	GROUP V POSITIVE CONTROL		
ANIMAL#	OBSERVATIONS	DAY OF STUDY	- 1 1
5551	WITHIN NORMAL LIMITS		Р .
5552	WITHIN NORMAL LIMITS		P
5553	WITHIN NORMAL LIMITS		P
5554	WITHIN NORMAL LIMITS		P
5555	WITHIN NORMAL LIMITS		P
5556	WITHIN NORMAL LIMITS		P
5557	WITHIN NORMAL LIMITS		P
5558	WITHIN NORMAL LIMITS		P
5559	WITHIN NORMAL LIMITS		P
5560	WITHIN NORMAL LIMITS		P

CODE: 1-SLIGHT 2-MODERATE 3-MARKED P-PRESENT

Page 1244

TABLE G

GASOLINE ETBE VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

WEEK OF STUDY								
ANIMAL#	-1	0	1	2	3	4		
1581	130	191	210	239	261	265		
1582	128	198	220	247	261	272		
1583	125	202	226	241	249	267		
1584	117	172	193	209	233	247		
1585	118	181	194	216	238	243		
1586	124	178	195	218	254	247		
1587	122	176	194	214	230	242		
1588	127	206	232	249	271	282		
1589	133	209	238	256	271	280		
1590	121	178	196	212	233	245		
MEAN	124	189	210	230	250	259		
S.D.	5.4	13.9	17.8	17.8	15.8	15.8		
N	10	10	10	10	10	10		

Page 1245

TABLE G

GASOLINE ETBE VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

INDIVIDUAL BODY WEIGHTS (GRAMS)

WEEK OF STUDY									
ANIMAL#	-1	0	1	2	. 3	4			
2571	127	195	220	231	249	262			
2572	119	184	201	220	239	249			
2573	128	194	217	239	261	274			
2574	123	176	206	228	243	255			
2575	123	191	209	240	250	263			
2576	129	184	210	227	249	254			
2577	127	202	228	243	261	279			
2578	116	179	201	228	249	275			
2579	121	178	204	227	239	257			
2580	135	196	210	232	250	263			
MEAN	125	188	210	232	249	263			
S.D.	5.6	8.9	8.8	7.1	7.5	10.0			
N	10	10	10	10	10	10			

Page 1246

TABLE G

GASOLINE ETBE VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

INDIVIDUAL	BODY	WEIGHTS	(GRAMS)

	WEEK	OF STU	IDY					
ANIMAL#	- 1	0	1	2	3	4		
3571	130	178	204	222	235	250		
3572	129	192	217	241	260	272		
3573	119	181	201	229	245	265		
3574	126	184	208	225	248	257		
3575	122	180	198	224	238	248		
3576	127	184	204	217	240	244		
3577	117	183	198	224	234	247		
3578	123	194	219	242	255	279		
3579	133	195	213	242	248	257		
3580	121	198	219	248	256	275		
MEAN	125	187	208	231	246	259		•
S.D.	5,1	7.1	8.4	10.7	9.1	12.6		
N	10	10	10	10	10	10		

Page 1247

TABLE G

.

GASOLINE ETBE VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

INDIVIDUAL BODY WEIGHTS (GRAMS)

•	WEEK	COF ST	UDY				
NIMAL#	-1 '	0	. 1	2	3	4	
4581	127	194	210	224	248	259	
4582	121	182	193	217	228	240	
4583	126	193	209	222	229	247	
4584	132	197	215	236	255	260	
4585	131	197	222	237	252	264	
4586	128	186	216	234	246	251	
4587	124	183	202	221	232	254	
4588	121	175	192	212	223	236	
4589	118	190	211	231	248	259	
4590	117	175	189	208	223	233	
AN	125	187	206	224	238	250	
.D.	5.2	8.2	11.2	10.0	12.8	10.9	
N	10	10	10	10	10	10	

Page 1248

TABLE G

GASOLINE ETBE VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

FEMALES GROU	PV POŠ	ITIVE	CONTROL		:	INDIVIDU	AL BODY WEIGHTS (GRAMS)
	WEEK	OF ST	UDY				
ANIMAL#	-1	0	1	2	3	4	
5551	123	192	217	236	253	246	
5552	128	199	224	241	264	260	
5553	118	181	199	216	237	229	
5554	125	184	214	236	258	252	
5555	122	182	206	223	236	242	
5556	131	208	233	250	274	267	
5557	133	198	230	252	270	261	
5558	128	190	218	239	260	239	
5559	120	187	221	247	249	232	
5560	113	188	210	230	241	242	
MEAN	124	191	217	237	254	247	
S.D.	6.3	8.5	10.6	11.6	13.4	12.6	
N	10	10	10	10	10	. 10	

.

.

Huntingdon Life Sciences 00-61291 Immunotoxicity Sub-Group

2

Page 1249

.

TABLE H

GASOLINE ETBE VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

FEMALES GROUP I 0 MG/M3											
	WEEK	OF STUE	ο¥								
ANIMAL#	0-1	0-2	0-3	0-4							
1581	19	48	70	74							
1582	22	48	63	74							
1583	23	39	47	65							
1584	21	37	61	75							
1585	13	36	57	62							
1586	17	39	75	69							
1587	18	38	54	66							
1588	26	42	64	75							
1589	29	47	62	70							
1590	18	34	54	67							
MEAN	20	41	61	70							
S.D.	4.6	5.3	8.1	4.7							
N	10	10	10	10							

Page 1250

TABLE H

GASOLINE ETBE VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

FEMALES	GROUP II	20	000 MG/N	13		INTERED DODI NEIGHI CHANDE INN ERDEENE (CRAME)
			OF STUE	 9Y		
ANIMAL#		0-1	0-2	0-3	0-4	
2571		25	36	53	66	
2572		16	36	55	65	
2573		23	46	67	80	
2574		30	51	66	79	
2575		18	49	59	72	
2576		26	43	65	70	
2577		25	41	58	77	
2578		21	49	70	96	
2579		26	49	62	79	
2580		14	36	55	67	
MEAN		22	44	61	75	
S.D.		5.1	6.1	6.0	9.3	
N		10	10	10	10	

Page 1251

TABLE H

GASOLINE ETBE VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

FEMALES	GROUP I	II :	10000 MG	/мз		INDIVIDUAL BODI WEIGHI CHANGE FROM DASELINE (GRANS)
		WEEK	OF STUE	γ		
ANIMAL#		0-1	0-2	0-3	0 - 4	
3571		26	44	57	72	
3572		25	49	68	80	
3573		20	48	64	84	
3574		24	41	64	73	
3575		17	44	58	68	
3576		19	33	56	60	
3577		15	41	51	64	
3578		25	48	61	85	
3579		18	47	53	61	
3580		20	49	58	77	
MEAN		21	44	59	72	
s.D.		3.8	5.2	5.3	9.1	
N		10	10	10	10	

Page 1252

TABLE H `

.

GASOLINE ETBE VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

	WEEK	OF STUE	Y		
ANIMAL#	0-1	0-2	0-3	0 - 4	
4581	16	30	54	65	
4582	11	36	46	58	
4583	16	29	36	54	
4584	18	39	59	63	
4585	25	40	55	68	
4586	30	47	60	65	
4587	19	38	49	71	
4588	17	37	48	62	
4589	21	40	57	68	
4590	14	33	47	58	
EAN	19	37	51	63	
.D.	5.4	5.5	7.3	5.3	
N	10	10	10	10	

.

Huntingdon Life Sciences 00-61291 Immunotoxicity Sub-Group

Page 1253

.

TABLE H

GASOLINE ETBE VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

		SITIVE C	ONTROL		
		OF STUD	Y		
ANIMAL#	0-1	0-2	0-3	0 - 4	·
5551	 25	44	61	54	
5552	25	42	65	61	
5553	18	35	56	48	
5554	30	52	74	67	
5555	24	41	55	60	
5556	25	42	66	59	
5557	32	55	73	63	
5558	28	49	71	49	
5559	34	61	63	46	
5560	22	42	53	54	
MEAN	26	46	64	56	
S.D.	4.9	7.7	7.5	7.1	
N	10	10	10	10	

Page 1254

TABLE I

GASOLINE ETBE VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

INDIVIDUAL FEED CONSUMPTION VALUES (GRAMS/KG/DAY)

	WEEK	OF STU	DΥ		
ANIMAL#	0	1	2	3	4
1581	 SF	90	87	86	73
1582	137	102	95	85	79
1583	132	92	88	83	83
1584	130	101	94	93	82
1,585	127	93	92	91	84
1586	SF	94	92	94	69
1587	SF	100	96	81	80
1588	130	95	85	78	73
1589	125	93	80	73	68
1590	123	93	91	87	77
MEAN	129	95	90	85	77
S.D.	4.8	4.2	5.1	6.5	5.7
N	7	10	10	10	10

SF=Spilled Feeder

TABLE I

GASOLINE ETBE VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

INDIVIDUAL FEED CONSUMPTION VALUES (GRA	4S / K	GRAMS/	(G/DAY)
---	--------	--------	---------

	WEEF	OF ST	UDY			
ANIMAL#	0	1	2	3	4	
2571	142	111	91	87	88	
2572	140	100	121	94	89	
2573	148	107	· 98	91	81	
2574	144	113	101	94	88	
2575	128	96	91	88	SF	
2576	117	94	89	82	79	
2577	121	90	86	81	74	
2578	126	99	85	82	87	·
2579	129	105	137	90	87	
2580	126	97	95	87	88	
EAN	132	101	99	87	85	
S.D.	10.6	7.5	16.9	4.7	5.4	
N	10	10	10	10	9	

SF=Spilled Feeder

Page 1255

Page 1256

TABLE I

GASOLINE ETBE VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

TAIDTVIDIAT		CONCUMPTION	VATURO	(GRAMS/KG/DAY)
TNDIATODAT	FEED	CONSUMPTION	VALUES	(GRAMS/KG/DAI)

FEMALES GRO	OUP III I	L0000 MG	з/мз		VIDUAL	FEED CONSUMPTION VALUES (GRAMS/NG/DAI)
	WEEK	COF STU	JDY			
ANIMAL#	0	1	2	3	4	
3571	118	SF	89	103	76	
3572	SF	103	93	90	83	
3573	146	107	108	105	98	
3574	122	98	91	84	79	
3575	SF	SF	106	90	83	
3576	129	101	92	87	78	
3577	133	104	98	90	90	
3578	133	104	98	85	86	
3579	124	99	95	84	85	
3580	140	106	100	89	86	
MEAN	131	103	97	91	84	
S.D.	9.3	3.3	6.2	7.5	6.2	
N	8	8	10	10	10	

SF=Spilled Feeder

Page 1257

TABLE I

GASOLINE ETBE VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

INDIVIDUAL FEED CONSUMPTION VALUES (GRAMS/KG/DAY)

FEMALES	GROUP IV	200	000 MG,	/мз	TUDI	VIDOAD F.	SED CONSOMPTION	VALUES	(GRADS/RG/DAT/		
		WEEK	OF ST	 JDY						 	
ANIMAL#		0	1	2	3	4					
4581		123	92	87	84	79				 	
4582		120	91	93	85	83					
4583		123	95	85	86	86					
4584		136	93	88	82	77					
4585		147	116	92	87	81					
4586		127	98	88	83	79					
4587		125	97	91	92	91	,				
4588		127	103	95	90	SF					
4589		133	99	92	85	79					
4590		128	94	90	84	79					
MEAN		129	98	90	86	82					
S.D.		7.9	7.4	3.2	3,0	4.5					
N		10	10	10	10	9					

SF=Spilled Feeder

.

Huntingdon Life Sciences 00-6129I Immunotoxicity Sub-Group

Page 1258

TABLE I

GASOLINE ETBE VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

INDIVIDUAL FEED CONSUMPTION VALUES (GRAMS/KG/DAY)

FEMALES	GROUP V F	OSITIVE	CONTROL			
	WE	EK OF ST	TUDY			
ANIMAL#	c	1	2	3	4	
5.551	127	104	97	89	71	
5552	140	111	107	94	75	
5553	143	104	103	107	71	
5554	135	110	99	104	76	
5555	125	110	97	89	83	
5556	128	101	100	91	70	
5557	124	100	91	79	66	
5558	122	97	91	86	68	
5559	132	103	98	87	67	· · · ·
5560	143	104	SF	87	78	
MEAN	132	105	98	91	73	
S.D.	8,0	4.6	5.3	8.3	5.3	
N	10	10	9	10	10	

SF=Spilled Feeder

.

Page 1259

3

TABLE J

GASOLINE ETBE VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

ANIMAL TERMINATION HISTORY

FEMALES GROU	IPI 0 MG/M3				
NIMAL#	TYPE OF DEATH	DATE OF DEATH	WEEK OF STUDY	STUDY DAY	
1581	TERMINAL SACRIFICE	20-NOV-01	 4	 28	
1582	TERMINAL SACRIFICE	20-NOV-01	4	28	
1583	TERMINAL SACRIFICE	20-NOV-01	4	28	
1584	TERMINAL SACRIFICE	20-NOV-01	4	28	
1585	TERMINAL SACRIFICE	20-NOV-01	4	28	
1586	TERMINAL SACRIFICE	20-NOV-01	4	28	
1587	TERMINAL SACRIFICE	20-NOV-01	4	28	
1588	TERMINAL SACRIFICE	20-NOV-01	4	28	
1589	TERMINAL SACRIFICE	20-NOV-01	4	28	
1590	TERMINAL SACRIFICE	20-NOV-01	4	28	

Page 1260

TABLE J

GASOLINE ETBE VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

ANIMAL TERMINATION HISTORY

	TYPE OF	DATE OF	WEEK OF	STUDY
ANIMAL#	DEATH	DEATH	STUDY	DAY
2571	TERMINAL SACRIFICE	20-NOV-01	4	28
2572	TERMINAL SACRIFICE	20-NOV-01	4	28
2573	TERMINAL SACRIFICE	20-NOV-01	4	28
2574	TERMINAL SACRIFICE	20-NOV-01	4	28
2575	TERMINAL SACRIFICE	20-NOV-01	4	28
2576	TERMINAL SACRIFICE	20-NOV-01	4	28
2577	TERMINAL SACRIFICE	20-NOV-01	4	28
2578	TERMINAL SACRIFICE	20-NOV-01	4	28
2579	TERMINAL SACRIFICE	20-NOV-01	4	28
2580	TERMINAL SACRIFICE	20-NOV-01	4	28

Page 1261

TABLE J

GASOLINE ETBE VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

ANIMAL TERMINATION HISTORY

.

FEMALES	GROUP III 10000 MG/M3	ANIMAL LEMILVATION ALSO	, ,		
ANIMAL#	TYPE OF DEATH	DATE OF DEATH	WEEK OF STUDY	STUDY DAY	
3571	TERMINAL SACRIFICE	20-NOV-01	4	28	
3571		20-NOV-01	4	28	
3573		20-NOV-01	4	28	
3574		20-NOV-01	4	28	
3575	TERMINAL SACRIFICE	20-NOV-01	4	28	
3576	TERMINAL SACRIFICE	20-NOV-01	4	28	
3577	TERMINAL SACRIFICE	20-NOV-01	4	28	
3578	TERMINAL SACRIFICE	20-NOV-01	4	28	
3579	TERMINAL SACRIFICE	20-NOV-01	4	28	
3580	TERMINAL SACRIFICE	20-NOV-01	4	28	

Page 1262

TABLE J

GASOLINE ETBE VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

ANIMAL TERMINATION HISTORY

	TYPE OF	DATE OF	WEEK OF	STUDY
MAL#	DEATH	DEATH	STUDY	DAY
4581	TERMINAL SACRIFICE	20-NOV-01	4	28
4582	TERMINAL SACRIFICE	20-NOV-01	4	28
4583	TERMINAL SACRIFICE	20-NOV-01	4	28
4584	TERMINAL SACRIFICE	20-NOV-01	4	28
4585	TERMINAL SACRIFICE	20-NOV-01	4	28
4586	TERMINAL SACRIFICE	20-NOV-01	4	28
4587	TERMINAL SACRIFICE	20-NOV-01	4	28
4588	TERMINAL SACRIFICE	20-NOV-01	4	28
4589	TERMINAL SACRIFICE	20-NOV-01	4	28
4590	TERMINAL SACRIFICE	20-NOV-01	4	28

Page 1263

TABLE J

GASOLINE ETBE VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

ANIMAL TERMINATION HISTORY

FEMALES GROUP V POSITIVE CONTROL

	TYPE OF	DATE OF	WEEK OF	STUDY
NIMAL#	DEATH	DEATH	STUDY	DAY
5551	TERMINAL SACRIFICE	20-NOV-01	4	28
5552	TERMINAL SACRIFICE	20-NOV-01	4	28
5553	TERMINAL SACRIFICE	20-NOV-01	4	28
5554	TERMINAL SACRIFICE	20-NOV-01	4	28
5555	TERMINAL SACRIFICE	20-NOV-01	4	28
5556	TERMINAL SACRIFICE	20-NOV-01	4	28
5557	TERMINAL SACRIFICE	20-NOV-01	4	28
5558	TERMINAL SACRIFICE	20-NOV-01	4	28
5559	TERMINAL SACRIFICE	20-NOV-01	4	28
5560	TERMINAL SACRIFICE	20-NOV-01	4	28

-

GFAP Levels in Specific Rat Brain Areas Following a 13-Week Whole-Body Inhalation Exposure to Gasoline ETBE Vapor Condensate

 HLS Study No.:
 00-6129

 Sponsor Study No.:
 211-ETBE-S

 Date:
 28 July 2010